【摘要】简述了工程机械噪声控制对于环境污染和乘坐舒适性的重要意义,以及对工程机械产品销售市场的影响.同时简要分析了工程机械在工作行驶中产生噪声的各类因素,并分析了噪声控制及测量的基本理论和方法。
【关键词】工程机械了噪声控制
引言
随着工程机械行业的迅速发展,人们对于工程机械的舒适性和振动噪声控制的要求越来越严格。噪声的控制,不仅关系到乘坐舒适性,而且还关系到环境保护。一切噪声又源于振动,振动能够引起某些部件的早期疲劳损坏,从而降低工程机械的使用寿命;过高的噪声既能损害驾驶员的听力,还会使驾驶员迅速疲劳,从而对工程机械行驶作业安全性构成了极大的威胁。噪声控制也关系到工程机械产品的工作的平顺性、耐久性和安全性。因此振动、噪声和舒适性这三者是密切相关的,既要减小振动,降低噪声,又要提高乘坐舒适性,保证产品的经济性,使工程机械产品的噪声控制在标准范围之内。
进入21上世纪后,人类为了实现可持续发展,提出了工程机械的环保技术和信息技术,使工程机械发展进入了新的发展阶段。欧美和日本市场对工程机械产品的噪声实施了更加严格的要求。因此工程机械的环保技术和信息技术是今后国际工程发展趋势的主流。为配合国际化战略,以国际先进产品标准为指导,提升产品技术水平,尤其为进一步开拓国际市场,徐工产品下一步发展思路和主要目标之一就是进行节能、环保、操作舒适性等技术的研究。
1噪声的种类
产生工程机械噪声的主要因素是空气动力、机械传动、液压三部分。从结构上可分为发动机(即燃烧噪声、排气噪声、冷却风扇噪声、发电机噪声),发动机本体噪声(如发动机振动,配气轴的转动,进、排气门开关等引起的噪声)。传动系噪声、底盘各部件的连接配合引起的噪声,车身噪声(发动机引起车身结构的振动,附件的安装不合理引起的噪声),液压噪声(齿轮泵,液压阀及管路振动引起的噪声),制动系统排气噪声,工作装置动作冲击噪声。其中发动机及其相关件产生的噪声占二分之一以上。因此发动机的减振、降噪成为工程机械噪声控制的关键之一。
2噪声要求
早在1983年,一部分国产装载机因噪声过高,北京市公安局不发给使用牌照,购买单位纷纷要求退货,使工程机械生产企业受到了一次强烈的冲击。1984年,机械工业部颁布了《工程机械噪声限值》标准(JB3774.84);1990年国家环保局颁布了《建筑施工场界噪声限值》标准(GBl2523-90)。在以上基础上,参照ISO/DIS6393-6396:1995标准,1996年颁布了国家标准《工程机械噪声限值》(GB16710.1—1996),该标准规定的限值作为现阶段我国工程机械产品的最低指标,是强制性标准而发布实施(比JB3774.1—84有所放宽)。该标准规定了工程机械司机位置处噪声限值为92dB(A),还规定了机外辐射噪声声功率级与标定功率之间的关系。分别见表1,2
由于西方发达国家制造业水平较高,无论是发动机,还是油泵、变速箱、变矩器等机械、液压部件等运行噪声较小。
出于对环境和对人体健康的保护,这些国家的嗓声限值标准一直在不断降低。欧洲噪声限值标准于1997年修订,比原标准下降4dB(A),其中规定最大噪声不得大于113dB(A),发动机功率为154kW时,噪声声功率级限值应小于等于107dB(A),比我国现行国家标准低11dB(A).2002年1月1日,欧洲标准进一步修订,比97年标准下降3dB(A)。在日本,1997年10月颁布实施的最低噪声限值标准,比97年欧洲标准严,其中规定发动机功率大于105kWlt寸,最大噪声不得大于106dB(A),比我国现行国家标准低12dB(A)。现在,降低工程机械产品噪声排放限值已是全球性趋势。
欧盟2000年5月5日的颁布的“有关室外使用设备环境噪声排放”法规规定,从2006年1月,实施该法规第二阶段噪声排放标准,同等发动机功率设备,比1997年修订的欧洲噪声限值低2~3dB(A)。具体噪声排放标准见表3
3噪声评价与噪声的控制
噪声评价指标主要是指车内、外的噪声值和振动适应性。评价方法可分为主观评价和客观评价。影响汽车噪声主观评价的主要因素是舒适性、响度和确定性。在客观评价时,可以采用噪声测量装置测量试验进行分析;此外模拟技术中的声场分析有限元法(FEM)和边界元法(BEM)也被广泛应用。
国外对噪声研究着手较早,1970年美国开始对车内嗓声特性进行研究,八十年代,美国工程力学研究所在研究车内噪声特性预测方面做了大量的研究工作,他们系统研究了声学模态分析的有限单元建模方法,探讨了车身结构振动对车内声场的影响以及车内声压对边界振动的影响,建立了结构一声学藕合的有限单元模型。完成了弹性边界的声学模态分析和车身结构受迫振动时车内声压分布的计算,推导出结构振动一声压波动在受到外界干扰力作用时的有限元计算公式,为车内噪声预测分析打下了良好的基础。
日本对工程机械噪声的研究也非常重视,在主要传动件噪声得到有效控制后,深入研究不同结构形成的空气流噪声,并应用在新一代挖掘机等工程机械上。国内在车辆噪声研究方面起步较晚,工程机械噪声的分析研究则更晚。近二十年来,治理工程机械噪声已成为许多生产厂和科研部门急需解决的重要课题。出于对舒适性的要求,国内外对车体〖驾驶室〗的振动及振动噪声研究较多,对车外噪声的分析研究相对较少,但近几年来也在逐步增加。
噪声治理首先要找出主要噪声源。频谱分析法是识别噪声源基本方法之一,频谱分析中除了使用幅值频谱图以外,最常用的还有功率谱图,此外还有相干函数法、倒频谱法。自70代起,声全息理论发展迅速,但至今未能得到广泛应用,主要是设备昂贵,且空间分辨误差要大于声波的波长。声强测量法是80年代初在声学测量和信号处理方面发展起来的新技术,已为人们普遍接受,由于测点太多,在我国一般厂家很难实现。近几年,采用声近场声全息技术和声压法识别车外主要噪声源的研究都取得了一定进展。
根据噪声产生和传播的机理,可以把噪声控制技术分为以下三类:一是对噪声源的控制,二是对噪声传播途径的控制,三是对噪声接受者的保护。其中对噪声源的控制是最根本、最直接的措施,包括降低噪声的激振力及降低发动机部位对激振力的响应等,即改造振源和声源。但是对噪声源难以进行控制时,就需要在噪声的传播途径中采取措施,例如吸声、隔声、消声、减振及隔振等措施。
工程机械产品的减振降哚水平与整车的热平衡性、动力性、经济性、可靠性及强度、刚度、质量、制造成本密切相关。
3.1发动机的振动与噪声
降低发动机噪声是工程机械产品噪声控制的重点。发动机是产生振动和噪声的根源。发动机的噪声是由燃料燃烧,配气机构、正时齿轮及活塞的敲击噪声等合成的。
(1)发动机本体噪声
降低发动机本体噪声就要改造振源和声源,包括用有限元法等方法分析设计发动机,选用柔和的燃烧工作过程,提高机体的结构刚度,采用严密的配合间隙,降低汽缸盖噪声。例如在油底壳上增设加强筋和横隔板,以提高油底壳的刚度,减少振动噪声。另外,给发动机涂阻尼材料也是一个有效的办法。阻尼材料能把动能转变成热能。进行阻尼处理的原理就是将一种阻尼材料与零件结合成一体来消耗振动能量。它有以下几种结构:自由阻尼层结构、间隔自由阻尼层结构、约束阻尼层结构和间隔约束阻尼层结构。它的采用明显地减少了共振的幅度,加快了自由振动的衰减,降低各个零件的传振能力,增加了零件在临界频率以上的隔振能力。目前,已有一些国家的专家设计了一种发动机主动隔振系统,用于减少发动机振动,以达到降低噪声的目的。
(2)进气噪声
进气噪声是发动机的主要噪声源之一,系发动机的空气动力噪声,随发动机转速的提高而增强。非增压式发动机的进气噪声主要成分包括周期性压力脉动噪声、涡流噪声、汽缸的共振噪声等。增压式柴油机的进气噪声主要来自增压器的压气机。对此,最有效的方法是采用进气消声器。类型有阻性消声器(吸声型)、抗性消声器(膨胀型、共振型、干涉型和多孔分散型)和复合型消声器。将其与空气滤清器结合起来(即在空滤器上增设共振腔和吸声材料,)就成为最有效的进气消声器。
(3)排气系噪声
排气系噪声主要由排气压力的脉动噪声,气流通过气门座时所发出的涡流噪声,由于边界层气流的扰动而产生的噪声以及排气口处的喷流噪声所组成。优化设计性能良好的消声器,是降低车辆排气系噪声的重要手段之一。优化设计的方法有声学有限元法和声学边界元法,但目前还处于起步阶段。避免消声器的传递特性与振动特性耦合是消声器设计中要重点解决的一个问题。但是,降低排气噪声与提高动力性是相矛盾的,因为降低排气噪声与降低排气背压对排气管直径的设计有着相矛盾的要求,前者要求有较小的直径,而后者却相反。目前,汽车上采用并联流路的双功能消声器,在减小背压和降低气流噪声方面颇为有效。
另外,对于发动机排气歧管到消声器入口的一段管路,采用柔性管的减振、降噪效果也很明显。
(4)冷却风扇噪声
冷却风扇是噪声的发生装置,受到护风圈、水泵、散热器及传动装置的影响,但其噪声的产生主要取决于风扇本身结构噪声以及与护风圈的共振。
3.2传动系噪声
传动系噪声来源于变速齿轮啮合引起的振动和传动轴旋转振动。一般采取的措施是:一是选用低噪变速器,二是发动机与变速箱及后桥主减速器等部件与底盘用橡胶减振垫进行柔性连接,从而达到隔振的目的,三是控制传动轴的平衡度,降低扭转振动。
3.3液压噪声
液压系统是工程机械的重要噪声源。现今液压设备在向高速、高压和大功率的方向发展,因此噪声也必然会相应增高。一般来说,高噪声的液压装置较难正常工作,甚至会影响其应有的性能和元件寿命。
液压系统的主要噪声源之一是油泵,为了降低其噪声,一是在油泵结构设计上消除一些机械冲击和压力冲击,二是想办法消除由几何空间变化不均匀所造成的压力脉动。
研究表明,液压阀的噪声特性主要与三个因素有关:阀的类型,阀内流体流向以及回游腔内压力。这三个因素很大程度上决定了液压阀的噪声。
3.4车体噪声
车体噪声主要有两方面,一是车身结构因与发动机相连引起的振动噪声,另一方面是工作装置在装料、卸料工作过程中撞击发生的冲击噪声。控制降低此类的基本途径是设计采用专业的隔振器。
3.5其他措施
对工程机械产品噪声的控制,除了在设计上使用优化方法和零件的优化选用以外,还可以对噪声进行主动控制。这就是以声消声技术,原理是:利用电子消声系统产生与噪声相位相反的声波.使两者的振动相互抵消,以降低噪声。这种消声装置采用极其先进的电子元件,具有优异的消声效果,可用于降低车内噪声、发动机噪声,还可以用于主动发动机支撑系统,以抵消发动机振动噪声。
4噪声测量技术
声级计是根据国际标准和国家标准按照一定的频率计权和时间计权测量声压级的仪器,它是声学测量中最基本最常用的仪器,适用于室内噪声、环境保护、机器噪声、建筑噪声等各种噪声测量。工程机械噪声通常也是采用声级计测量。
声强测量是噪声控制领域内出现的一门新技术。由于声强是矢量,反应了声能传播的大小和方向,其测量不受环境的影响。声强测量也属非接触测量,不受声源类型的限制。通过声强测量,不但可测得声源声强级的高低,同时可识别声源的方位,用它来识别噪声源和研究结构的传声损失,比用声压法研究具有许多优点。随着电子技术、信号处理技术和计算机技术的发展,声强测量法己成为声学领域中一种重要的测量技术,特别是在车辆噪声控制中得到了广泛的应用。声强测量主要的优点在于:
1)声强法具有较好的抗背景噪声的能力,它简化试验条件对试验环境要求不高,可以方便地应用于车辆的噪声测试分析。2)通过声强测试分析得到的三维声强图和等声强线图等,能够定性、定量、形象地描述车辆噪声的声场特性,可有效地进行噪声源定位分析,对于改进设计提高整车的噪声水平具有实际的重要意义。